The ASAHIKLIN series are environmentally friendly Fluorinated Fluids.

AGC Chemicals company vision

Chemistry for a Blue Planet
Creating safe, secure, comfortable and environmentally friendly world with chemical technology.

The ASAHIKLIN series meet AGC Chemicals company vision.

Chemistry for a Blue Planet

Creating safe, secure, comfortable and environmentally friendly world with chemical technology.

Nonflammable
The ASAHIKLIN series have no flash point, thus does not require explosion proof equipment.

Stable
The ASAHIKLIN series are chemically and thermally stable.

General-Purpose
The ASAHIKLIN series can be used for a variety of customer applications.

Reliability
The ASAHIKLIN series have a broad range of material compatibilities.

Cost-saving
The ASAHIKLIN series have energy saving advantages and can reduce waste.

ODP zero
The ASAHIKLIN series don’t affect the Ozone Layers.

Lower GWP
The ASAHIKLIN series have minimum Global Warming.

Recyclable
The ASAHIKLIN series can be recycled with distillation.

ASAHIKLIN Product Offerings

<table>
<thead>
<tr>
<th>ASAHIKLIN AE-3000</th>
<th>AE-3000</th>
<th>AC-2000</th>
<th>AC-6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIRAE No.</td>
<td>HFE-347pc-f</td>
<td>HFC-52-13p</td>
<td>HFC-76-13f</td>
</tr>
<tr>
<td>Molecule Structure</td>
<td>CF3CH2OCF2CF2H</td>
<td>CF2CF2CF4</td>
<td>CF2CF3OCF2CH2</td>
</tr>
<tr>
<td>Boiling Point (°C)</td>
<td>56</td>
<td>71</td>
<td>115</td>
</tr>
<tr>
<td>Freezing Point (°C)</td>
<td>-04</td>
<td>-80</td>
<td>-76</td>
</tr>
<tr>
<td>Ozone Depletion Potential</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Global Warming Potential</td>
<td>580 □*1</td>
<td>2,000 □*2</td>
<td>136 □*2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>1kg Plastic Bottle</th>
<th>20kg Pail</th>
<th>300kg Drum</th>
</tr>
</thead>
</table>

□*1 Intergovernmental Panel on Climate/technology & Economic Assessment Panel Report in 2007
□*2 Calculated Value by the National Institute of Advanced Industrial Science and Technology (AIST)
□*3 ODP – Ozone Depletion Potential
□*4 GWP – Global Warming Potential
□*5 ITH – 100yr Global Warming Potential
ASAHIKLIN

Liquid Temperature Range of the ASAHIKLIN series

- Specific Heat - Temperature Curve
- Kinematic Viscosity - Temperature Curve
- Density - Temperature Curve
- Vapor Pressure - Temperature Curve

Heat Transfer Fluids
- Liquid at a wide temperature range
- Thermally and Chemically stable
- High unit heat transportation capacity
- High Electrical Insulation
- Nonflammable
- Reduced pump load

Solvents
- Good coating performance
- Good drying performance
- Good dispersibility
- Nonflammable

Dilution Solvents
- Lubricant for HDDs
- Fluorinated Greases
- Water-Repellant Agents
- Antifouling Agents

Dispersion Agents and others
- Fluoropolymers
- Graphite, Nano-Carbons
- Fireproof Agent
- Reaction Solvent for Fluoropolymers

Other Brines
- Coolant for Computer Server, Condenser, Sensor, Precision and Electronics Devices
- Coolant for Chemical and Medical industrial Equipment
- Temperature control for environmental room
- Heat Transfer Fluid for Thermostat Chamber

Other Applications
- Working Fluid for Heat Pipes
- Coolant for Rectifier, LED and Laser Generator
- Leak Tester for Filter, Bulb
- Reliability test for Electronics

Other Brines
- Coolant for Computer Server, Condenser, Sensor, Precision and Electronics Devices
- Coolant for Chemical and Medical industrial Equipment
- Temperature control for environmental room
- Heat Transfer Fluid for Thermostat Chamber

Other Applications
- Working Fluid for Heat Pipes
- Coolant for Rectifier, LED and Laser Generator
- Leak Tester for Filter, Bulb
- Reliability test for Electronics

Application 1

Application 2

Brine for Semiconductor Devices
- Examples
 - Dry Etching Equipment
 - Stepper
 - Plotter
 - CVD Lithography
 - IC Tester

Working Fluids
- Examples
 - Working Fluid for Heat Pipes
 - Coolant for Rectifier, LED and Laser Generator

Specific Heat × Density × Heat Transfer Ratio

- AE-3000
- AC-2000
- AC-6000

Water

Specific Heat - Temperature Curve

Heat Transfer Ratio

Vapor Pressure - Temperature Curve

Density - Temperature Curve
Application 3

Cleaning
- Good cleaning performance in tight spaces
- Reduced drying temperature and drying time
- No spots after drying
- Broad range of material compatibilities
- Nonflammable

Co-Solvent
- Dewatering
- Alcohol Drying

Neat Cleaning
- [Examples]
 - Particle Removal (Image sensors, Crystal Oscillator Devices, Wafers, Plastic Molds)
 - Cleaning for Refrigeration Cycle
 - Cleaning for Fluorinated Oils and Greases
 - Dry Cleaning

Dewatering, Alcohol Drying
- [Examples]
 - Drying after Aqueous Cleaning (Glass Lens, Glass Substrates, Quartz)
 - Drying after Wet Plating
 - Drying for Carbide Metal before coating

Physical Properties

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit</th>
<th>AE-3000</th>
<th>AE-3100E</th>
<th>AC-2000</th>
<th>AC-6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Point</td>
<td>°C</td>
<td>56</td>
<td>54</td>
<td>71</td>
<td>115</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>°C</td>
<td>-29</td>
<td>-48</td>
<td>-45</td>
<td>-29</td>
</tr>
<tr>
<td>Density (25°C)</td>
<td>kg/l</td>
<td>1.470</td>
<td>1.400</td>
<td>1.675</td>
<td>1.506</td>
</tr>
<tr>
<td>Surface Tension (25°C)</td>
<td>mN/m</td>
<td>16.4</td>
<td>16.1</td>
<td>13.4</td>
<td>15.5</td>
</tr>
<tr>
<td>Viscosity (25°C)</td>
<td>mPa·s</td>
<td>0.65</td>
<td>0.60</td>
<td>0.81</td>
<td>1.08</td>
</tr>
<tr>
<td>Kinematic Viscosity (25°C)</td>
<td>μf/s</td>
<td>0.44</td>
<td>—</td>
<td>0.49</td>
<td>0.71</td>
</tr>
<tr>
<td>Weight Change</td>
<td>g/m³</td>
<td>1.28</td>
<td>—</td>
<td>1.10</td>
<td>1.19</td>
</tr>
<tr>
<td>Thermal Conductivity (25°C)</td>
<td>mW/(m·K)</td>
<td>89</td>
<td>—</td>
<td>90.9</td>
<td>66.8</td>
</tr>
<tr>
<td>Latent Heat of Vaporization (boiling point)</td>
<td>kJ/kg</td>
<td>163</td>
<td>—</td>
<td>123</td>
<td>76</td>
</tr>
<tr>
<td>Relative Evaporation Rate</td>
<td>Ether 100%</td>
<td>67</td>
<td>66</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>Critical Temperature</td>
<td>°C</td>
<td>190</td>
<td>—</td>
<td>198</td>
<td>245</td>
</tr>
<tr>
<td>Critical Pressure</td>
<td>MPa</td>
<td>2.7</td>
<td>—</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Solubility of Water</td>
<td>ppm</td>
<td>900</td>
<td>5,300</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>ppm</td>
<td>700</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flash Point</td>
<td>°C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Range of Inflammability</td>
<td>%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dielectric Constant (25°C)</td>
<td>—</td>
<td>6.8</td>
<td>—</td>
<td>3.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Electrical Resistivity</td>
<td>Ω·m</td>
<td>1.3×10¹⁰</td>
<td>—</td>
<td>2.9×10¹⁰</td>
<td>3.4×10¹⁰</td>
</tr>
<tr>
<td>Electrical Conductivity (21°C)</td>
<td>μS/m</td>
<td>7.7×10⁻¹⁰</td>
<td>—</td>
<td>3.4×10⁻¹⁰</td>
<td>2.9×10⁻¹⁰</td>
</tr>
<tr>
<td>Dielectric Breakdown Voltage (21°C)</td>
<td>kV</td>
<td>39.5</td>
<td>—</td>
<td>58.8</td>
<td>27.0</td>
</tr>
</tbody>
</table>

Dewatering, Alcohol Drying
- [Examples]
 - Drying after Aqueous Cleaning (Glass Lens, Glass Substrates, Quartz)
 - Drying after Wet Plating
 - Drying for Carbide Metal before coating

Material Compatibility

Effect for Metals
No detrimental effects are found when cleaning Stainless Steel, Aluminum, Copper, Brass or other metals with ASAHIKLIN series.

Effect for Plastics and Elastomers
Samples were immersed for 3 days into AE-3000, AE-3100E, AC-2000 at boiling point, and into AC-6000 at 50℃.

Effect for Solvents

Physical Properties

<table>
<thead>
<tr>
<th>Items</th>
<th>Unit</th>
<th>AE-3000</th>
<th>AE-3100E</th>
<th>AC-2000</th>
<th>AC-6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling Point</td>
<td>°C</td>
<td>56</td>
<td>54</td>
<td>71</td>
<td>115</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>°C</td>
<td>-29</td>
<td>-48</td>
<td>-45</td>
<td>-29</td>
</tr>
<tr>
<td>Density (25°C)</td>
<td>kg/l</td>
<td>1.470</td>
<td>1.400</td>
<td>1.675</td>
<td>1.506</td>
</tr>
<tr>
<td>Surface Tension (25°C)</td>
<td>mN/m</td>
<td>16.4</td>
<td>16.1</td>
<td>13.4</td>
<td>15.5</td>
</tr>
<tr>
<td>Viscosity (25°C)</td>
<td>mPa·s</td>
<td>0.65</td>
<td>0.60</td>
<td>0.81</td>
<td>1.08</td>
</tr>
<tr>
<td>Kinematic Viscosity (25°C)</td>
<td>μf/s</td>
<td>0.44</td>
<td>—</td>
<td>0.49</td>
<td>0.71</td>
</tr>
<tr>
<td>Weight Change</td>
<td>g/m³</td>
<td>1.28</td>
<td>—</td>
<td>1.10</td>
<td>1.19</td>
</tr>
<tr>
<td>Thermal Conductivity (25°C)</td>
<td>mW/(m·K)</td>
<td>89</td>
<td>—</td>
<td>90.9</td>
<td>66.8</td>
</tr>
<tr>
<td>Latent Heat of Vaporization (boiling point)</td>
<td>kJ/kg</td>
<td>163</td>
<td>—</td>
<td>123</td>
<td>76</td>
</tr>
<tr>
<td>Relative Evaporation Rate</td>
<td>Ether 100%</td>
<td>67</td>
<td>66</td>
<td>57</td>
<td>11</td>
</tr>
<tr>
<td>Critical Temperature</td>
<td>°C</td>
<td>190</td>
<td>—</td>
<td>198</td>
<td>245</td>
</tr>
<tr>
<td>Critical Pressure</td>
<td>MPa</td>
<td>2.7</td>
<td>—</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Solubility of Water</td>
<td>ppm</td>
<td>900</td>
<td>5,300</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Solubility in Water</td>
<td>ppm</td>
<td>700</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flash Point</td>
<td>°C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Range of Inflammability</td>
<td>%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dielectric Constant (25°C)</td>
<td>—</td>
<td>6.8</td>
<td>—</td>
<td>3.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Electrical Resistivity</td>
<td>Ω·m</td>
<td>1.3×10¹⁰</td>
<td>—</td>
<td>2.9×10¹⁰</td>
<td>3.4×10¹⁰</td>
</tr>
<tr>
<td>Electrical Conductivity (21°C)</td>
<td>μS/m</td>
<td>7.7×10⁻¹⁰</td>
<td>—</td>
<td>3.4×10⁻¹⁰</td>
<td>2.9×10⁻¹⁰</td>
</tr>
<tr>
<td>Dielectric Breakdown Voltage (21°C)</td>
<td>kV</td>
<td>39.5</td>
<td>—</td>
<td>58.8</td>
<td>27.0</td>
</tr>
</tbody>
</table>